How fast does the GluR1Qflip channel open?

نویسندگان

  • Gang Li
  • Li Niu
چکیده

Opening of a ligand-gated ion channel is the step at which the binding of a neurotransmitter is transduced into the electrical signal by allowing ions to flow through the transmembrane channel, thereby altering the postsynaptic membrane potential. We report the kinetics for the opening of the GluR1Qflip channel, an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit of the ionotropic glutamate receptors. Using a laser-pulse photolysis technique that permits glutamate to be liberated photolytically from gamma-O-(alpha-carboxy-2-nitrobenzyl)glutamate (caged glutamate) with a time constant of approximately 30 micros, we show that, after the binding of glutamate, the channel opened with a rate constant of (2.9 +/- 0.2) x 10(4) s(-1) and closed with a rate constant of (2.1 +/- 0.1) x 10(3) s(-1). The observed shortest rise time (20-80% of the receptor current response), i.e. the fastest time by which the GluR1Qflip channel can open, was predicted to be 35 micros. This value is three times shorter than those previously reported. The minimal kinetic mechanism for channel opening consists of binding of two glutamate molecules, with the channel-opening probability being 0.93 +/- 0.10. These findings identify GluR1Qflip as one of the temporally efficient receptors that transduce the binding of chemical signals (i.e. glutamate) into an electrical impulse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Receptor Occupancy and Channel-opening Kinetics

AMPA glutamate ion channels are tetrameric receptors in which activation to form the open channel depends on the binding of possibly multiple glutamate molecules. However, it is unclear whether AMPA receptors bound with a different number of glutamate molecules (i.e. one being the minimal and four being the maximal number of glutamate molecules) open the channels with different kinetic constant...

متن کامل

A simulation study of calcium release channel

The IP3R calcium release channel has been simulated using a stochastic simulation algorithm (SSA;Gillespie algorithm) and De young-Keiser model. A set of different concentration for Cat' and IP3 havebeen used. Considering the Number of molecules in each state, a non linear behavior of the system can beseen clearly. The inhibiting role of the Ca+2 on the open state (X110) has been studied. The d...

متن کامل

Temperature-dependent model of human cardiac sodium channel

Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...

متن کامل

Temperature-dependent model of human cardiac sodium channel

Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...

متن کامل

The fast gating mechanism in ClC-0 channels.

We investigate and then modify the hypothesis that a glutamate side chain acts as the fast gate in ClC-0 channels. We first create a putative open-state configuration of the prokaryotic ClC Cl- channel using its crystallographic structure as a basis. Then, retaining the same pore shape, the prokaryotic ClC channel is converted to ClC-0 by replacing all the nonconserved polar and charged residue...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 6  شماره 

صفحات  -

تاریخ انتشار 2004